
8. MATERIAL MODELING 

The article presents modeling of ramified characteristics 
and lossy processes in hysteresis loops by means of a hybrid 
model. The modeling system of closed loops of elementary 
characteristics – the classical Preisach model – is used as the 
basis for the discussion. The model was developed by including 
a neural density function approximator. 

The work concentrates on lossy branched characteristics in 
a non-symmetrical circulation of the coordinate system, as well 
as on clear extrema in the range of accumulation of discrete 
values. These factors affect the density function shape and the 
neural network structure used for the approximation. 

The authors give three typical examples of modeling of 
ramified characteristics. The first example is a retrogressive 
characteristic of the second generation of superconducting 
material; the second one deals with the typical hysteresis in 
ferromagnetic materials, whereas the third one includes 
magnetic hysteresis in high-temperature superconductors. 

I. INTRODUCTION 

Modeling of nonlinear environments, with lossy 
dynamic characteristics, requires the determination of the 
ramified characteristics of changes from the baseline. The 
essence of the difference is in the outline diagram according 
to the case of incremental changes in terms of decreasing, or 
for the case of monotonic change along with other values of 
the previous extrema. It is not possible to describe such 
change with a mathematical model defined by functional 
mapping of the input relative to output values [1], [4], [6].  

Reliable description of phenomena or physical 
properties of the dynamic processes often requires the 
determination of many complex causal relationships. There 
are reports of lack of significant correlations of the initial 
input values to output values. In such cases, the modeling 
focuses on the use of fuzzy logic and neural network models 
[3], [6]. 

II.  HYBRID MODEL  

Mapping the ramified characteristics of nonlinear lossy 
environments requires the development of a hybrid 
numerical model.  

 
Fig. 1. Diagram of the used multilayer structure 

 

The model uses the basic properties of the Preisach 
mathematical model developed for constructing a 

phenomenological hysteresis, and the characteristics of the 
approximation multilayer neural network structure (Fig. 1). 

The mathematical Preisach model was defined as a 
projection in a limited field of two-dimensional set of real 
numbers. It is a summation of each of the hysteresis 
operators γαβ at any point R2. The value of each operator is 
determined by assigning coordinates (α, β) of temporary 
input values with respect to monotonicity and the selection 
of the density function µ(α, β) value. 

( ) ( )∑=
n

dd, αβs

N

iR βαγβαµ                      (1) 

Equation (1) of the density function values takes into 
consideration the areas with positive or negative factor γαβ 
which allows for the calculation of the temporary value of 
the modeled static parameter. Such an understanding of the 
relationship (1) in the continuous domain makes it possible 
to define a Preisach model (2) for the continuous density 
function µ(α, β). 
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Every elementary operator reacts to the value of the 
response in accordance with the input value. The weighted 
sum of all output values of elementary operators, multiplied 
by the total density function sets the output of the system. 
The set of weights µ(α, β) shapes the weighting function, 
which is defined as a description of the relative share of the 
operator in the total elementary hysteresis [1]. 

In this article the authors propose a new way of 
approximating the density function µ(α, β) of the Preisach 
model by using algorithms of artificial neural networks. 

The presented research is based on the comparison of 
the results of modeling using classical approximation and 
algorithms that use artificial neural networks [2], [3], [6]. 
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Function (3) was used to determine the reverse (Fig. 3) 
characteristics of strips of the second generation 
superconducting material. Rs sets the value of the resistance 
in the resistive state, the parameters δα, δβ – are constants 
defining the limit of the critical temperature, σα, σβ are 
constants assigned to the heat capacity. The equation (3) 
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defines the desired approximating function in the classical 
model calibrated with experimental data (Fig. 2). 

 
 

Fig. 2. Density function of the superconducting material (the function’s 
domain represents the increasing current values and decreasing ones) 

  

 
Fig. 3. The graphical representation of the HTS reverse characteristics 

 

 
Fig. 4. Results of approximation - learning and validation errors of the 

artificial neural network 

The authors also present two cases of modeling 
magnetic hysteresis loops. The first selected object is a 
current limiter with a collapsible cut core. The density 
function of such object is based on the calibration of the 
measurement data of the elemental metal bar in the 
Hopkinson yoke.  

The second case is a superconducting material hysteresis 
[5]. In all the cases, the basis for the analysis are the 
validation and learning errors (Fig. 4).  

The described examples show the benefits of the hybrid 
model – a combination of the classical Preisach model and 
artificial neural network algorithms. The benefits consist of 
replacing the analytical model of the density function by a 

fuzzy model – the weight values of neural structures. The 
evaluation of the selected model was based on the results of 
the learning process. The convergence of graphical 
representations of the validations errors and the learning 
errors values have been examined (Fig. 4).  The surface 
shapes of the density function for a ferromagnetic material 
(Fig. 5), and HTS (Fig. 6) are presented as approximation 
results. The applied model is characterized through all the 
properties of the algorithms of artificial neural networks. 
 

 
Fig. 5. Results of approximation - weighting function values 

(ferromagnetic materials) 

 
Fig. 6. Results of approximation of HTS hysteresis density function  

 

The authors demonstrated that the proposed hybrid 
model is a useful tool for basic modeling of ramified 
magnetic characteristics (Fig. 3). 
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