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The article presents modeling of ramified charactestics
and lossy processes in hysteresis loops by meansaohybrid
model. The modeling system of closed loops of elemery
characteristics — the classical Preisach model — ised as the
basis for the discussion. The model was developed including
a neural density function approximator.

The work concentrates on lossy branched charactetiss in
a non-symmetrical circulation of the coordinate syem, as well
as on clear extrema in the range of accumulation ofiscrete
values. These factors affect the density functiorhape and the
neural network structure used for the approximation

The authors give three typical examples of modelingf
ramified characteristics. The first example is a r&@ogressive
characteristic of the second generation of supercdocting
material; the second one deals with the typical hysresis in
ferromagnetic materials, whereas the third one ineldes
magnetic hysteresis in high-temperature supercondters.

. INTRODUCTION

Modeling of nonlinear environments, with lossy
dynamic characteristics, requires the determinatibrthe
ramified characteristics of changes from the baselThe
essence of the difference is in the outline diagaaoording
to the case of incremental changes in terms ofedsang, or
for the case of monotonic change along with otlzues of
the previous extrema. It is not possible to descsiich
change with a mathematical model defined by fumetio
mapping of the input relative to output values [4], [6].

Reliable description of phenomena or physical
properties of the dynamic processes often requihes
determination of many complex causal relationshigeere
are reports of lack of significant correlationstbé initial
input values to output values. In such cases, thdeting
focuses on the use of fuzzy logic and neural ndtwardels

3], [6].

Il. HYBRID MODEL

Mapping the ramified characteristics of nonlineassly
environments requires the development of a hybrid
numerical model.

Fig. 1. Diagram of the used multilayer structure

The model uses the basic properties of the Preisach
mathematical model developed for constructing a

phenomenological hysteresis, and the charactexisfiche
approximation multilayer neural network structulrég( 1).

The mathematical Preisach model was defined as a
projection in a limited field of two-dimensionaltsef real
numbers. It is a summation of each of the hysteresi
operatorsy,g at any point R The value of each operator is
determined by assigning coordinates £) of temporary
input values with respect to monotonicity and teiestion
of the density functiop(a, B) value.

R ()= ula,B)y,qdadB (1)
N,

Equation (1) of the density function values taketo i
consideration the areas with positive or negataetdr y.s
which allows for the calculation of the temporaglue of
the modeled static parameter. Such an understaditige
relationship (1) in the continuous domain makgsogsible
to define a Preisach model (2) for the continuoessity
functionp(a, ).

R.()= [[ Ha. By, (il haaap 2)

Every elementary operator reacts to the value ef th
response in accordance with the input value. Thighted
sum of all output values of elementary operatondtiplied
by the total density function sets the output af flystem.
The set of weightg(a, 5) shapes the weighting function,
which is defined as a description of the relatikare of the
operator in the total elementary hysteresis [1].

In this article the authors propose a new way of
approximating the density functiqn(a, ) of the Preisach
model by using algorithms of artificial neural netks.

The presented research is based on the comparison o
the results of modeling using classical approxioratand
algorithms that use artificial neural networks [3], [6].
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Function (3) was used to determine the reverse @ig

characteristics of strips of the second generation

superconducting materidRs sets the value of the resistance

in the resistive state, the parametéfsds — are constants

defining the limit of the critical temperature,, o are

constants assigned to the heat capacity. The equéd)
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defines the desired approximating function in tlessical
model calibrated with experimental data (Fig. 2).

Fig. 2. Density function of the superconducting eniaf (the function’s
domain represents the increasing current valuesiaogtasing ones)
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Fig. 3. The graphical representation of the HT®re¥ characteristics
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Fig. 4. Results of approximation - learning anddegion errors of the
artificial neural network

The authors also present two cases of modeling
magnetic hysteresis loops. The first selected ¢objgeca
current limiter with a collapsible cut core. Thendiy
function of such object is based on the calibratdrthe
measurement data of the elemental metal bar in the
Hopkinson yoke.

The second case is a superconducting materialregste
[5]. In all the cases, the basis for the analysis the
validation and learning errors (Fig. 4).

The described examples show the benefits of theidyb
model — a combination of the classical Preisachehadd
artificial neural network algorithms. The benefitsnsist of
replacing the analytical model of the density fimttby a

fuzzy model — the weight values of neural structurghe
evaluation of the selected model was based orethdts of

the learning process. The convergence of graphical
representations of the validations errors and #aning
errors values have been examined (Fig. 4). Théacar
shapes of the density function for a ferromagnetiterial
(Fig. 5), and HTS (Fig. 6) are presented as appration
results. The applied model is characterized throaigithe
properties of the algorithms of artificial neuraitworks.

Fig. 5. Results of approximation - weighting functivalues
(ferromagnetic materials)
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Fig. 6. Results of approximation of HTS hysterefgasity function

The authors demonstrated that the proposed hybrid
model is a useful tool for basic modeling of raetfi
magnetic characteristics (Fig. 3).
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